Buscar este blog

Entradas populares

viernes, 28 de agosto de 2009

Zenon y su pensamiento...

align:center;cursor:pointer; cursor:hand;width: 234px; height: 320px;" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgLIQL3AkSoCp-VEAXUNugm8iNGPlX3DzgEHV20J8UQFmivCe6pkglgfDVWKFIMW9rc6tGo1L9n5Vh9IcyhfIXm7C5L_qA0ywqp3saCS6d-AMo86_rixGvzvM58ITHgf1RyLWIuO7BeW68/s320/zenon.bmp" border="0" alt=""id="BLOGGER_PHOTO_ID_5375067073300646402" />


Zenón de Elea (en griego Ζήνων ο Ελεάτης) fue un filósofo eleata griego nacido en Elea (¿490-430? adC). Al igual que Meliso de Samos, reforzó y argumentó a favor de la filosofía parmenidea, es conocido por sus paradojas, que en su época eran aporéticas, como las que niegan la existencia del movimiento o la pluralidad del ser. Zenón trató de probar que el ser tiene que ser homogéneo, único y, en consecuencia, que el espacio no está formado por elementos discontinuos sino que el cosmos o universo entero es una única unidad.
Inventó la demostración llamada ad/absurdum (reducción por el absurdo), que toma por hipótesis las afirmaciones del adversario y muestra los absurdos a los que se llegaría si esa hipótesis fuera verdadera, obligando al interlocutor, en última instancia, a aceptar la tesis opuesta a la que sostuvo en un principio.

Sus principales argumentos son :
1. Contra la pluralidad como estructura de lo real.
2. Contra la validez del espacio.
3. Contra la realidad del movimiento.
4. Contra la realidad del transcurrir del tiempo.
Las paradojas de Zenón son una serie de paradojas o aporías, ideadas por Zenón de Elea, para apoyar la doctrina de Parménides de que las sensaciones que obtenemos del mundo son ilusorias, y concretamente, que no existe el movimiento. Racionalmente, una persona no puede recorrer un estadio de longitud, porque primero debe llegar a la mitad de éste, antes a la mitad de la mitad, pero antes aún debería recorrer la mitad de la mitad de la mitad y así eternamente hasta el infinito. De este modo, teóricamente, una persona no puede recorrer un estadio de longitud, aunque los sentidos muestran que sí es posible.

Aquiles y la tortuga



Réplica a la paradoja

Actualmente, se conoce que Aquiles realmente alcanzará a la tortuga,1 ya que, como demostró el matemático escocés James Gregory (1638-1675), una suma de infinitos términos puede tener un resultado finito. Los tiempos en los que Aquiles recorre la distancia que lo separa del punto anterior en el que se encontraba la tortuga son cada vez más y más pequeños, y su suma da un resultado finito, que es el momento en que alcanzará a la tortuga.

Otra manera de plantearlo es que Aquiles puede fijar un punto de llegada que está metros delante de la tortuga en vez del punto en que ella se encuentra. Ahora, en vez de cantidades infinitas, tenemos dos cantidades finitas con las cuales se puede calcular un espacio finito de tiempo en el cual Aquiles pasará a la tortuga.
Otra forma de encarar el problema es huyendo del análisis infinitesimal, cuyo planteamiento matemático se desconocía en tal época, para reconvertirlo en análisis discreto: Filípides -el campeón olímpico al que se ordenó que abandonara las filas del ejército para comunicar a Atenas la victoria conseguida sobre los persas en la playa de Marathon- no recorre espacios infinitesimales, sino discretos, que podemos denominar zancada. A cada zancada le podemos asignar un espacio concreto. Por ejemplo podemos suponer que Filípides recorre un metro a cada zancada. Ahora el problema se reduce a la comparación de velocidades relativas: calcular en qué momento la última zancada de Filípides recorrerá una distancia mayor a la que haya podido recorrer la tortuga en el mismo tiempo, incluso aunque no sepamos definir la distancia exacta que la tortuga recorrería. Es decir, basta que una de las variables sea discreta y que podamos suponer que, en determinado tiempo, puede superar a las distancias infinitesimales, para demostrar, incluso teóricamente, que el movimiento existe.

La dicotomía

Esta paradoja, conocida como argumento o paradoja de la dicotomía, es una variante de la anterior.
Zenón está a ocho metros de un árbol. Llegado un momento, lanza una piedra, tratando de dar al árbol. La piedra, para llegar al objetivo, tiene que recorrer antes la primera mitad de la distancia que lo separa de él, es decir, los primeros cuatro metros, y tardará un tiempo (finito) en hacerlo. Una vez llegue a estar a cuatro metros del árbol, deberá recorrer los cuatro metros que le quedan, y para ello debe recorrer primero la mitad de esa distancia. Pero cuando esté a dos metros del árbol, tardará tiempo en recorrer el primer metro, y luego el primer medio metro restante, y luego el primer cuarto de metro... De este modo, la piedra nunca llegará al árbol.
Es posible utilizar este razonamiento, de forma análoga, para «demostrar» que la piedra nunca llegará a salir de la mano de Zenón.
Al igual que en la paradoja de Aquiles y la tortuga, es cierto que la cantidad de distancias recorridas (y tiempos invertidos en hacerlo) es infinita, pero su suma es finita y por tanto la piedra llegará al árbol.

La paradoja de la flecha

En esta paradoja, se lanza una flecha. En cada momento en el tiempo, la flecha está en una posición específica, y si ese momento es lo suficientemente pequeño, la flecha no tiene tiempo para moverse, por lo que está en el reposo durante ese instante. Ahora bien, durante los siguientes periodos de tiempo, la flecha también estará en reposo por el mismo motivo. De modo que la flecha está siempre en reposo: el movimiento es imposible.
Un modo de resolverlo es observar que, a pesar de que en cada instante la flecha se percibe como en reposo, estar en reposo es un término relativo.No se puede juzgar, observando sólo un instante cualquiera, si un objeto está en reposo. En lugar de ello, es necesario compararlo con otros instantes adyacentes. Así, si lo comparamos con otros instantes, la flecha está en distinta posición de la que estaba antes y en la que estará después. Por tanto, la flecha se está moviendo.
Otra perspectiva es acudir, directamente, a la definición de velocidad, cuya idea esencial es la de cambio: se cambia de espacio en un tiempo determinado. Así que, por definición, un cuerpo que se mueve, sin alterar el volumen de espacio que ocupa en cada momento, cambia de espacio, es decir, ocupa la misma cantidad, volumen, y forma de espacio, pero en un lugar distinto, al momento siguiente. El movimiento sería la sucesión de los distintos espacios ocupados por el cuerpo (móvil) en la sucesión de los distintos momentos que componen la magnitud de tiempo considerada. Así, si asumimos que el concepto velocidad, es decir, movimiento, puede definirse racionalmente, simultáneamente estamos admitiendo que el movimiento, racionalmente, en teoría, existe.

No hay comentarios: